The giant panda is cryptic

0
  • 1.

    Caro, T. The adaptive importance of coloring in mammals. Life sciences 55, 125 (2005).

    items

    Google Scholar

  • 2.

    Caro, T. The colors of existing mammals. Semin. Cell dev. Biol. 24, 542-552 (2013).

    items

    Google Scholar

  • 3.

    Schaller, GB, Jinchu, H., Wenshi, P. & Jing, Z. The giant pandas from Wolong (University of Chicago Press, 1985). https://doi.org/10.1086/414647.

    a book

    Google Scholar

  • 4th

    Schaller, GB The last panda (University of Chicago Press, 1994).

    Google Scholar

  • 5.

    Morris, R. & Morris, D. Men and pandas (McGraw-Hill Book Company, 1966).

    Google Scholar

  • 6th

    Morris, R. & Morris, D. The giant panda (Penguin Books, 1982).

    Google Scholar

  • 7th

    Lazell, JDJ Color samples of the giant bear (Ailuropoda melanoleuca) and the real panda (Ailurus fulgens) (Mississippi Wildlife Federation, 1974).

    Google Scholar

  • 8th.

    Cott, HB Adaptive staining in animals (Methuen & Co., Ltd., 1940).

    Google Scholar

  • 9.

    Endler, JA For the measurement and classification of colors when examining animal color samples. Biol. J. Linn. Social 41, 315-352 (1990).

    items

    Google Scholar

  • 10.

    Stevens, M. & Merilaita, S. Animal Camouflage: Current Issues and New Perspectives. Philos. Translated from R. Soc. B biol. Science 364, 423-427 (2009).

    items

    Google Scholar

  • 11.

    Caro, T., Walker, H., Rossman, Z., Hendrix, M. & Stankowich, T. Why is the giant panda black and white ?. Behavior eco. 28, 657-667 (2017).

    items

    Google Scholar

  • 12th

    Endler, JA The light color in the forest and its effects. Eco. Monogr. 63, 1-27 (1993).

    items

    Google Scholar

  • 13.

    Merilaita, S. Crypsis due to disturbing color in a woodlice. Proz. R. Soc. B biol. Science 265, 1059-1064 (1998).

    items

    Google Scholar

  • 14th

    Cuthill, IC et al. Disturbing coloring and background pattern matching. nature 434, 72-74 (2005).

    ADS
    CAS
    items

    Google Scholar

  • fifteen.

    Stevens, M. & Merilaita, S. Definition of disturbing coloring and differentiation of their functions. Philos. Translated from R. Soc. B biol. Science 364, 481-488 (2009).

    items

    Google Scholar

  • 16.

    Ruxton, G., Allen, W., Sherratt, T. & Speed, M. Avoiding Attack: The Evolutionary Ecology of Crypsis, Aposematism, and Mimicry (Oxford University Press, 2019).

    Google Scholar

  • 17th

    Troscianko, J. & Stevens, M. Image Calibration and Analysis Toolbox – A free software suite for objectively measuring reflectance, color, and pattern. Methods Ökol. development 6th, 1320-1331 (2015).

    items

    Google Scholar

  • 18th

    van den Berg, CP, Troscianko, J., Endler, JA, Marshall, NJ & Cheney, KL Quantitative Color Pattern Analysis (QCPA): A Comprehensive Framework for Analyzing Color Patterns in Nature. Methods Ökol. development 11, 316-332 (2020).

    items

    Google Scholar

  • 19th

    Troscianko, J., Skelhorn, J. & Stevens, M. Quantifying Camouflage: How to Predict Recognizability Based on Appearance. BMC Evol. Biol. 17th, 7 (2017).

    items

    Google Scholar

  • 20th

    Caves, EM & Johnsen, S. AcuityView: A Package Showing the Effects of Visual Acuity on Scenes Observed by an Animal. Methods Ökol. development 9, 793-797 (2018).

    items

    Google Scholar

  • 21.

    Marshall, NJ Communication and camouflage using the same “light” colors in reef fish. Philos. Translated from R. Soc. B biol. Science 355, 1243-1248 (2000).

    CAS
    items

    Google Scholar

  • 22nd

    Barnett, JB, Cuthill, IC & Scott-Samuel, NE Distance-dependent aposematism and camouflage in the vermilion caterpillar (Tyria jacobaeae, erebidae). R. Soc. Open science. 5, 171396 (2018).

    ADS
    items

    Google Scholar

  • 23

    Barnett, JB, Cuthill, IC & Scott-Samuel, NE Distance-dependent pattern blending can camouflage salient aposematic cues. Proz. R. Soc. B biol. Science 284, 20170128 (2017).

    items

    Google Scholar

  • 24

    Stoner, CJ, Caro, TM & Graham, CM Ecological and Behavioral Correlates of Coloration in Artiodactyls: Systematic Analyzes of Conventional Hypotheses. Behavior eco. 14th, 823-840 (2003).

    items

    Google Scholar

  • 25th

    Caro, T., Walker, H., Santana, SE & Stankowich, T. The evolution of anterior staining in carnivores. Behavior eco. Sociobiol. 71, 177 (2017).

    items

    Google Scholar

  • 26

    Melin, AD, Kline, DW, Hiramatsu, C. & Caro, T. Zebra crossings through the eyes of their predators, zebras and humans. Plus one 11, e0145679 (2016).

    items

    Google Scholar

  • 27

    Land, MF & Nilsson, D.-E. Animal eyes (Oxford University Press, 2012).

    a book

    Google Scholar

  • 28.

    Phillips, GAC, How, MJ, Lange, JE, Marshall, NJ & Cheney, KL Disturbing coloration in reef fish: Does the adaptation to the background reduce the risk of predation? J. Erw. Biol. 220, 1962-1974 (2017).

    items

    Google Scholar

  • 29

    Li, Y. et al. Giant pandas can distinguish the emotions of human facial images. Science rep 7th, 1-8 (2017).

    ADS
    items

    Google Scholar

  • 30th

    Stevens, M., Párraga, CA, Cuthill, IC, Partridge, JC & Troscianko, TS Using digital photography to study animal coloration. Biol. J. Linn. Social 90, 211-237 (2007).

    items

    Google Scholar

  • 31.

    Lind, O., Milton, I., Andersson, E., Jensen, P. & Roth, LSV High visual acuity in dogs. Plus one 12, 1-12 (2017).

    Google Scholar

  • 32.

    Pasternak, T. & Merigan, WH The luminance dependence of spatial vision in cats. Vis. Res. 21, 1333-1339 (1981).

    CAS
    items

    Google Scholar

  • 33.

    Clark, DL & Clark, RA Neutral point test of color vision in domestic cats. Adult eye res. 153, 23-26 (2016).

    CAS
    items

    Google Scholar

  • 34.

    Caves, EM, Brandley, NC & Johnsen, S. Visual acuity and the evolution of signals. Trends eco. development 33, 1-15 (2018).

    items

    Google Scholar

  • 35.

    Vorobyev, M. & Osorio, D. Receptor noise as a determinant of color thresholds. Proz. R. Soc. B biol. Science 265, 351-358 (1998).

    CAS
    items

    Google Scholar

  • 36.

    Nokelainen, O., Brito, JC, Scott-Samuel, NE, Valkonen, JK & Boratyński, Z. Accuracy of camouflage in rodents of the Sahara-Sahel desert. J. Anim. Eco. https://doi.org/10.1111/1365-2656.13225 (2020).

    items
    PubMed

    Google Scholar

  • 37.

    Nokelainen, O., Stevens, M. & Caro, T. Color polymorphism in the coconut crab (Birgus latro). Development eco. 32, 75-88 (2018).

    items

    Google Scholar

  • 38.

    Nokelainen, O., Maynes, R., Mynott, S., Price, N. & Stevens, M. Improved camouflage through ontogenetic color changes gives coastal crabs a lower risk of detection. Function eco. https://doi.org/10.1111/1365-2435.13280 (2019).

    items
    PubMed
    PubMed headquarters

    Google Scholar


  • Source link

    Leave A Reply

    Your email address will not be published.