The giant panda is cryptic
Caro, T. The adaptive importance of coloring in mammals. Life sciences 55, 125 (2005).
Google Scholar
Caro, T. The colors of existing mammals. Semin. Cell dev. Biol. 24, 542-552 (2013).
Google Scholar
Schaller, GB, Jinchu, H., Wenshi, P. & Jing, Z. The giant pandas from Wolong (University of Chicago Press, 1985). https://doi.org/10.1086/414647.
Google Scholar
Schaller, GB The last panda (University of Chicago Press, 1994).
Google Scholar
Morris, R. & Morris, D. Men and pandas (McGraw-Hill Book Company, 1966).
Google Scholar
Morris, R. & Morris, D. The giant panda (Penguin Books, 1982).
Google Scholar
Lazell, JDJ Color samples of the giant bear (Ailuropoda melanoleuca) and the real panda (Ailurus fulgens) (Mississippi Wildlife Federation, 1974).
Google Scholar
Cott, HB Adaptive staining in animals (Methuen & Co., Ltd., 1940).
Google Scholar
Endler, JA For the measurement and classification of colors when examining animal color samples. Biol. J. Linn. Social 41, 315-352 (1990).
Google Scholar
Stevens, M. & Merilaita, S. Animal Camouflage: Current Issues and New Perspectives. Philos. Translated from R. Soc. B biol. Science 364, 423-427 (2009).
Google Scholar
Caro, T., Walker, H., Rossman, Z., Hendrix, M. & Stankowich, T. Why is the giant panda black and white ?. Behavior eco. 28, 657-667 (2017).
Google Scholar
Endler, JA The light color in the forest and its effects. Eco. Monogr. 63, 1-27 (1993).
Google Scholar
Merilaita, S. Crypsis due to disturbing color in a woodlice. Proz. R. Soc. B biol. Science 265, 1059-1064 (1998).
Google Scholar
Cuthill, IC et al. Disturbing coloring and background pattern matching. nature 434, 72-74 (2005).
Google Scholar
Stevens, M. & Merilaita, S. Definition of disturbing coloring and differentiation of their functions. Philos. Translated from R. Soc. B biol. Science 364, 481-488 (2009).
Google Scholar
Ruxton, G., Allen, W., Sherratt, T. & Speed, M. Avoiding Attack: The Evolutionary Ecology of Crypsis, Aposematism, and Mimicry (Oxford University Press, 2019).
Google Scholar
Troscianko, J. & Stevens, M. Image Calibration and Analysis Toolbox – A free software suite for objectively measuring reflectance, color, and pattern. Methods Ökol. development 6th, 1320-1331 (2015).
Google Scholar
van den Berg, CP, Troscianko, J., Endler, JA, Marshall, NJ & Cheney, KL Quantitative Color Pattern Analysis (QCPA): A Comprehensive Framework for Analyzing Color Patterns in Nature. Methods Ökol. development 11, 316-332 (2020).
Google Scholar
Troscianko, J., Skelhorn, J. & Stevens, M. Quantifying Camouflage: How to Predict Recognizability Based on Appearance. BMC Evol. Biol. 17th, 7 (2017).
Google Scholar
Caves, EM & Johnsen, S. AcuityView: A Package Showing the Effects of Visual Acuity on Scenes Observed by an Animal. Methods Ökol. development 9, 793-797 (2018).
Google Scholar
Marshall, NJ Communication and camouflage using the same “light” colors in reef fish. Philos. Translated from R. Soc. B biol. Science 355, 1243-1248 (2000).
Google Scholar
Barnett, JB, Cuthill, IC & Scott-Samuel, NE Distance-dependent aposematism and camouflage in the vermilion caterpillar (Tyria jacobaeae, erebidae). R. Soc. Open science. 5, 171396 (2018).
Google Scholar
Barnett, JB, Cuthill, IC & Scott-Samuel, NE Distance-dependent pattern blending can camouflage salient aposematic cues. Proz. R. Soc. B biol. Science 284, 20170128 (2017).
Google Scholar
Stoner, CJ, Caro, TM & Graham, CM Ecological and Behavioral Correlates of Coloration in Artiodactyls: Systematic Analyzes of Conventional Hypotheses. Behavior eco. 14th, 823-840 (2003).
Google Scholar
Caro, T., Walker, H., Santana, SE & Stankowich, T. The evolution of anterior staining in carnivores. Behavior eco. Sociobiol. 71, 177 (2017).
Google Scholar
Melin, AD, Kline, DW, Hiramatsu, C. & Caro, T. Zebra crossings through the eyes of their predators, zebras and humans. Plus one 11, e0145679 (2016).
Google Scholar
Land, MF & Nilsson, D.-E. Animal eyes (Oxford University Press, 2012).
Google Scholar
Phillips, GAC, How, MJ, Lange, JE, Marshall, NJ & Cheney, KL Disturbing coloration in reef fish: Does the adaptation to the background reduce the risk of predation? J. Erw. Biol. 220, 1962-1974 (2017).
Google Scholar
Li, Y. et al. Giant pandas can distinguish the emotions of human facial images. Science rep 7th, 1-8 (2017).
Google Scholar
Stevens, M., Párraga, CA, Cuthill, IC, Partridge, JC & Troscianko, TS Using digital photography to study animal coloration. Biol. J. Linn. Social 90, 211-237 (2007).
Google Scholar
Lind, O., Milton, I., Andersson, E., Jensen, P. & Roth, LSV High visual acuity in dogs. Plus one 12, 1-12 (2017).
Google Scholar
Pasternak, T. & Merigan, WH The luminance dependence of spatial vision in cats. Vis. Res. 21, 1333-1339 (1981).
Google Scholar
Clark, DL & Clark, RA Neutral point test of color vision in domestic cats. Adult eye res. 153, 23-26 (2016).
Google Scholar
Caves, EM, Brandley, NC & Johnsen, S. Visual acuity and the evolution of signals. Trends eco. development 33, 1-15 (2018).
Google Scholar
Vorobyev, M. & Osorio, D. Receptor noise as a determinant of color thresholds. Proz. R. Soc. B biol. Science 265, 351-358 (1998).
Google Scholar
Nokelainen, O., Brito, JC, Scott-Samuel, NE, Valkonen, JK & Boratyński, Z. Accuracy of camouflage in rodents of the Sahara-Sahel desert. J. Anim. Eco. https://doi.org/10.1111/1365-2656.13225 (2020).
Google Scholar
Nokelainen, O., Stevens, M. & Caro, T. Color polymorphism in the coconut crab (Birgus latro). Development eco. 32, 75-88 (2018).
Google Scholar
Nokelainen, O., Maynes, R., Mynott, S., Price, N. & Stevens, M. Improved camouflage through ontogenetic color changes gives coastal crabs a lower risk of detection. Function eco. https://doi.org/10.1111/1365-2435.13280 (2019).
Google Scholar